CLAIMED 6<u>R/6S</u> ALLENE ISOMERIZATION IN CAROTENOIDS IS GEOMETRICAL 9-TRANS/9-CLS ISOMERIZATION

Terje Bjørnland^a, Gerhard Englert^b, Kurt Bernhard^C and Synnøve Liaaen-Jensen*^a ^aOrganic Chemistry Laboratories, Norwegian Institute of Technology, University of Trondheim, N-7034 Trondheim-NTH, Norway

^bCentral Research Units and ^CDepartment of Vitamin and Nutritional Research, F. Hoffmann-La Roche & Co., Ltd CH-4002 Basel, Switzerland

<u>Summary</u>. Previously claimed isolations of (<u>S</u>) allene isomers of natural carotenoids have been disproved. Detailed ¹H NMR have demonstrated that these isomers are geometrical isomers with the <u>cis</u>-bond adjacent to the allenic bond.

From their results on photosensitized oxygenation of hydroxy- β -ionol, providing an allene of established relative configuration, Isoe <u>et al</u>.¹ in 1971 suggested that the biosynthesis of allenic carotenoids might proceed by a similar mechanism. A subsequent $\underline{S} \rightarrow \underline{R}$ isomerization of the allenic bond would then be required in order to account for the chirality of natural allenic carotenoids.

The isolation of a minor presumed $(6'\underline{S})$ allenic isomer $(\underline{1b})$ of $(6'\underline{R})$ -fucoxanthin (<u>1a</u>, Scheme 1), was later claimed² i) from an iodine catalyzed stereomutation mixture of <u>1a</u> and ii) from the brown alga <u>Fucus serratus</u>. The main diagnostic feature for the presumed $6'\underline{S}$ isomer was a pronounced downfield shift in the ¹H NMR spectrum of the allenic proton from 6.05 ppm for <u>1a</u> to 6.55 ppm for <u>1b</u>.

Subsequently we isolated a similar stereoisomer of peridin (2) and of neoxanthin (3), both with shifted allenic proton NMR signal, from their iodine catalyzed quasiequilibrium mixtures in \underline{ca} 10% yield³.

However, it has been shown⁴ that 0.5 ppm downfield shifts are compatible with <u>cis</u>-configurated carotenoids. Therefore an alternative interpretation could be $(6'\underline{R})$ -9'-<u>cis</u> (or $(6\underline{R})$ -9-<u>cis</u>) instead of $(6'\underline{S})$ (or $6\underline{S}$).

We have now used 19'-butancyloxyfucoxanthin $(\underline{4})^5$ as a model, since it is known that substituted in-chain methyl groups promote <u>cis</u>-isomerization of the adjacent double bond⁶. The 9'-<u>cis</u> isomer was consequently expected as a major component of the iodine catalyzed stereoisomerization mixture. Indeed a 6.534 ppm isomer, isolated by column chromatography on CaCO₃ using 8% acetone in benzene as an eluent, represented as much as 45% of total.

Detailed ¹H NMR studies of all-<u>trans 4</u> (<u>4a</u>) and the 9'-<u>cis</u> isomer (<u>4b</u>), including 400 MHz TOCSY-1D, TOCSY-2D and particularly 500 MHz CAMELSPIN or ROESY (rotating frame NOE) have demonstrated 9'-<u>cis</u> configuration for the 6.534 ppm isomer (<u>4b</u>)⁷.

<u>4a</u> exhibited an essentially conservative⁸ CD spectrum, and the 6.534 ppm isomer a mirror-image Cotton effect, compatible with the $9'-\underline{cis}$ configuration $(\underline{4b})^7$.

No other isomers isolated from the iodine catalyzed mixtures of 2, 3 and 4a exhibited a shifted allenic proton in ¹H NMR, and a concomitant $6'\underline{R} \rightarrow 6'\underline{S}$ and $9'-\underline{trans} \rightarrow 9'-\underline{cis}$ isomerization is disregarded.

"R* and S* indicate relative configuration, $\underline{i}.\underline{e}$. racemates of these structures

Subsequently, the ¹H NMR data of a number of allenic model compounds (Scheme 2) were analyzed. For the syntheses of optically active 5a-d, see ref. 11.

The downfield ¹H NMR shift of the allenic proton of <u>5a</u> (6<u>R</u>* by carotenoid numbering) versus <u>5b</u> (6<u>S</u>*) reported to be 0.17 ppm only¹, were in our experiments (400 MHz) with more recently prepared synthons¹¹ <u>5a</u> (6<u>R</u>) and <u>5b</u> (6<u>S</u>) confirmed as 0.11 ppm in CDCl₃ and 0.07 ppm in DMSO (Table 1).

¹H NMR data for the C-5 epimeric allenic ketones 5c (6<u>R</u>) and 5d (6<u>S</u>) now prepared¹¹ have a chemical shift difference of 0.02 ppm in CDCl₃ and of 0.10 ppm in DMSO and the two 6<u>R</u> isomers (<u>5a</u> and <u>5c</u>, 5.75 ppm and 5.72 ppm) and two 6<u>S</u> isomers (<u>5b</u> and <u>5d</u>, 5.82 ppm) have closely similar chemical shifts for the allenic proton within the 6<u>R</u>-series and 6<u>S</u>-series.

Aditionally, the difference between the chemical shift of the allenic protons in <u>6a</u> and <u>6b</u>, <u>7a</u> and <u>7b</u> and <u>8a</u> and <u>8b</u>, respectively, are \leq 0.17 ppm. Consequently the configuration at C-5 appears to have little influence on the chemical shift of the allenic proton.

The available synthetic models of 6<u>S</u> allenic isomers which are C-5 epimeric in relation to <u>1-4</u>, namely the triol <u>6a</u> prepared here $(6\underline{S})^{12}$ and by Ito <u>et al</u>. $(6\underline{S}^*)^9$ and their aldehydes <u>7a</u> $(6\underline{S}^*)^{9,12}$ and <u>8a</u> $(6\underline{S}^*)^9$ all have chemical shifts of the allenic proton at values ≤ 6.20 ppm (Table 1).

	CDC1			DI	DMSO	
<u>1,2,3,4a</u>	6.03 -	6.06	Aw0 50			
<u>4b</u> (9'- <u>cis</u> - <u>4</u>)	6.53	L L	1.0.30	_		
<u>5a</u>	5.83 ¹ ,	5.86		5.75		
<u>5b</u>	6.00 ¹ ,	5.97	∆=0,11	5.82	∆=0,07	
<u>50</u>	5.91]		5.72		
<u>5d</u>	5.93	ļ	∆=0.02	5.82	∆=0.10	
<u>6a</u>	6.09 ⁹ ,	6.10		6.02]		
<u>6b</u>		5.95	∆=0.15	5.90	∆=0.12	
<u>7a</u>	6.17 ⁹]				
<u>7b</u>		6.08]	∆=0.09			
<u>8a</u>	6.20 ⁹	1				
<u>8b</u>	6.03 ⁹	J	∆=0.17			

Table 1. ¹H NMR signals of the allenic H (8-values).

We therefore conclude that the presumed 6<u>S</u> (6'<u>S</u>) allenic isomers of <u>1</u>, <u>2</u> and <u>3</u> (<u>3</u> occurring as a natural 9'-<u>cis</u> isomer in green photosynthetic tissues¹⁰) represent 9'-<u>cis-1</u>, 9-<u>cis-2</u> and 9-<u>cis-3</u> isomers, respectively, and that <u>R,S</u> isomerization of the allenic bond in carotenoids is a less favoured process than <u>trans/cis</u> isomerization of other double bonds.

REFERENCES

- 1. Isoe, S., Katsumura, S., Hyeon, S.B. and Sakan, T. <u>Tetrahedron Letters</u>, 1089 (1971).
- 2. Bernhard, K., Moss, G.P., Toth, Gy. and Weedon, B.C.L. <u>Tetrahedron Letters</u>, 3899 (1974).
- Skjetne, T., Bjørnland, T. and Liaaen-Jensen, S. <u>Abstr. 7th Int. IUPAC Symp. Caro-</u> tenoids, 35, Munich (1984).
- 4. Englert, G. In Britton, G. and Goodwin, T.W. (eds.) <u>Carotenoid</u> <u>Chemistry</u> <u>and</u> <u>Biochemistry</u>, Pergamon, 107 (1982).
- 5. Bjørnland, T., Liaaen-Jensen, S. and Throndsen, J. To be published.
- 6. Liaaen-Jensen, S. Progr. Chem. Org. Nat. Prod. 39, 123 (1980).
- 7. Englert, G., Bjørnland, T. and Liaaen-Jensen, S. To be published.
- Sturzenegger, V., Buchecker, R. and Wagniere, G. <u>Helv</u>. <u>Chim</u>. <u>Acta</u> <u>63</u>, 1074 (1980).
- 9. Ito, M., Hirata, Y., Tsukida, K., Tanaka, N., Hamada, K., Hino, R. and Fujiwara, T. <u>Chem. Pharm. Bull. In press</u>.
- Bjørnland, T., Skjetne, T. and Liaaen-Jensen, S. <u>Abstr. 8th Int. Symp. Carote-</u> noids, P3, Boston (1987).
- 11. Bernhard, K. Abstr. 6th Int. Symp. Carotenoids, Liverpool (1981):

^{12.} Bernhard, K. Abstr. 7th Int. Symp. Carotenoids, 59, Munich (1984).

(Received in UK 3 February 1989)